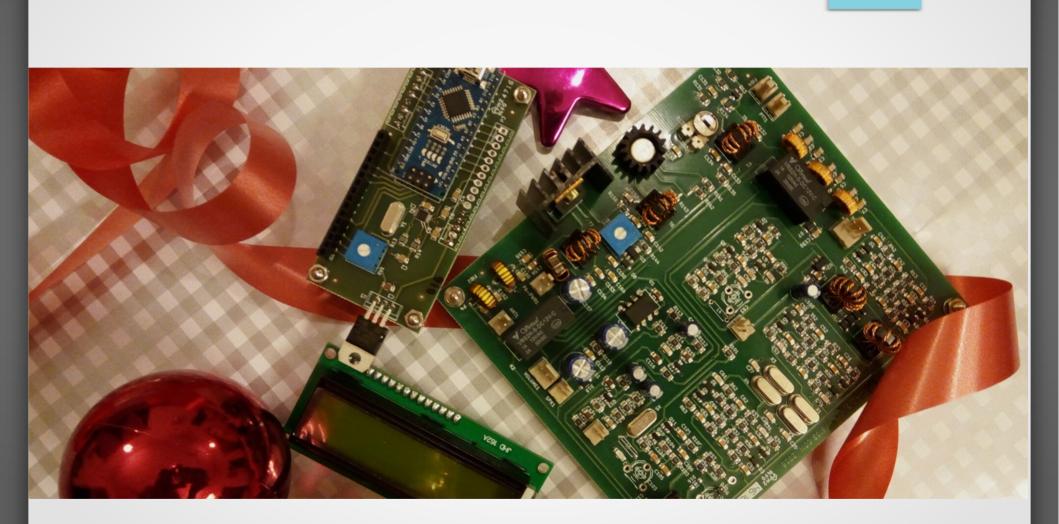
BITX40 / µBITX Transceiver Kits

Andy Stewart KB10IQ March 15, 2018

Presented to the Nashoba Valley Amateur Radio Club Pepperell, MA

BITX40 / µBITX – What are they?


- QRP transceiver kits from India
 - by Ashhar Farhan (VU2ESE)
- Kit includes:
 - Main circuit board already assembled (including toroids)
 - Raduino (custom board)
 - Arduino Nano
 - Si5351 CMOS clock generator (up to 160 MHz)
 - 16x2 LCD display
 - Wiring harnesses, connectors, potentiometers, hardware, etc.
- User supplies the enclosure
- Shipped in 1 week from India via DHL (\$10 extra)

BITX40 / μ BITX – How do they compare?

- BITX40
 - Single band 40m
 - 6.5-7.0 watts @13.8V
 - One IRF510
 - 16x2 LCD
 - Si5351
 - Potentiometer tuning
 - PTT directly to board
 - 12 MHz IF, Si5351 @5MHz
 - Separate PA power rail
 - Primitive MIC

- μΒΙΤΧ
 - Multi-band 80m-10m
 - Up to 10 watts @13.8V
 - Two IRF510s (push pull)
 - 16x2 LCD
 - Si5351
 - Rotary encoder tuning
 - PTT goes to Arduino
 - 1st IF upconvert to 45MHz
 2nd IF downconvert to 12MHz
 - Separate PA power rail
 - Primitive MIC

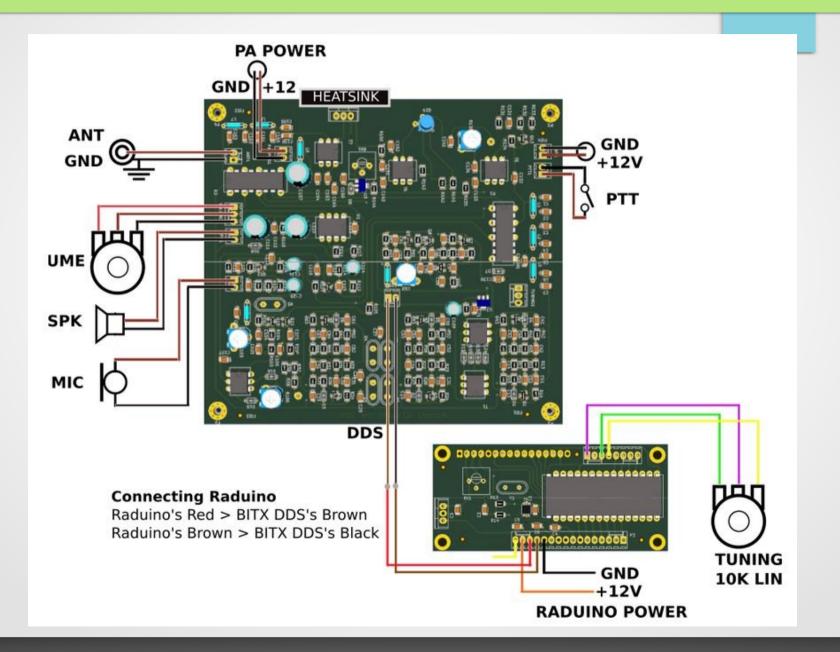
BITX40 Circuit Boards

BITX40 / µBITX Features

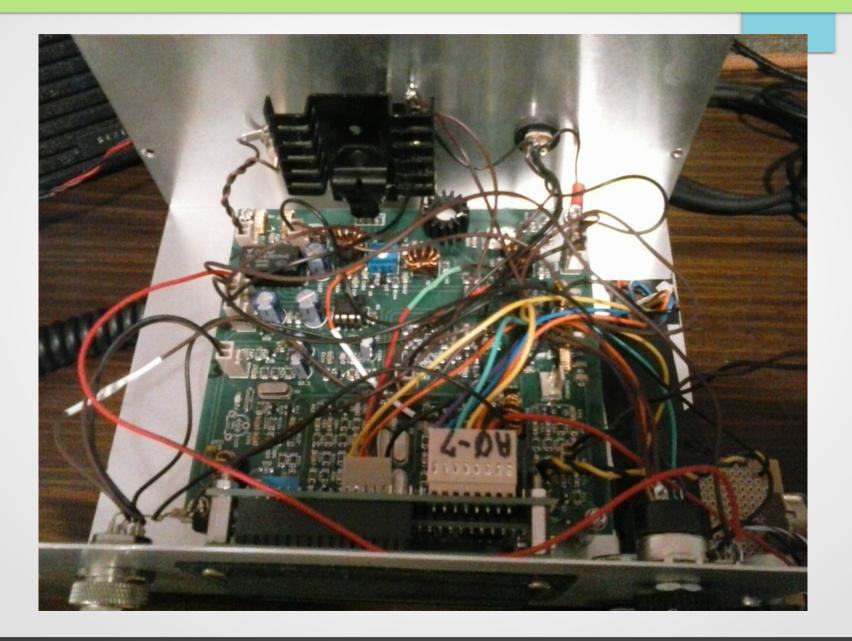
- Inexpensive kits:
 - BITX40: \$69 includes DHL shipping from India
 - μBITX: \$119 (also includes shipping)
- Schematics are freely available
- Arduino program (sketch) is Free Software GPL v3
- Very active(!) community on the internet
- Many software and hardware mods are available
 - Different sketches available for stock rig
 - Custom sketches to match custom mods also available

Arduino Nano

- Open Source Hardware (Creative Commons)
- Microcontroller: ATmega328
- 5Vdc, 19mA, 16MHz
- Programmable using Arduino IDE and available libraries
- Arduino IDE runs on multiple operating systems
- 32KB FLASH memory
 - (2KB bootloader, 30KB available to user for program)
- 1KB EEPROM, 2KB SRAM
- Leftover pins for the user:
 - BITX40: 6 digital, 5 analog
 - μBITX: 0 digital, 1 analog


Si5351

- CMOS clock generator
 - 3 clock outputs (only 1 used in BITX40)
- I2C device
 - 2 pin serial protocol, serial clock, serial data
- Generates frequencies up to 160MHz (0 ppm error)
- Glitchless frequency changes
- Ideally suited for replacing crystals, crystal oscillators, VCXOs (voltage controlled crystal oscillators)


Building the BITX40 / μ BITX

- Obtain a suitable enclosure
- Drill holes and cut opening for LCD display
- Other enclosure machining as needed
- Mount all of the parts in the enclosure
- Software is already loaded into the Arduino


BITX40 Wiring Diagram

BITX40 internals by KB10IQ

BITX40 Enclosure by KB10IQ

- External speaker from NEAR-Fest
- ICOM mic
- Awesome knobs from elmer's junk box
- Metal enclosure
- Brushed metal look from green kitchen scrubbing pad
- Homebrew tie wrap bezel

Prepare for first power-on

- Connect 12Vdc (13.8Vdc is OK)
- Use a 2 amp fuse!
- Connect the antenna cable (or dummy load) to the BNC connector.
- Plug in an external speaker
 - Don't use headphones!
 - It is much too loud and variable! No AGC(!)
- Connect microphone
- Throw the switch! Hear the speaker pop...good sign!
- Sniff for smoke.....
- Watch the LCD display, with the original sketch:
 - It should say "Raduino", then display the frequency

First QSO

- Called my elmer: Steve (W1KBE)
- Transmitting 6.5 watts 40m LSB phone
- First record QSO: 0.215 miles / watt !
- It works!!!
- Fast forward many days/months:
 - Best DX so far: Croatia, about 4000 miles

BITX40 Hacks Done by Others

- Implement USB for digital modes
- Bend the circuitry and software to allow for CW use
- Several options for the following:
 - AGC circuit
 - RF gain circuit
- PA rail is intentionally separate from 12V rail
 - Bigger IRF510 heat sink and 24V at PA
 - 17 20 watts output on LSB
- Replace tuning potentiometer with a rotary encoder

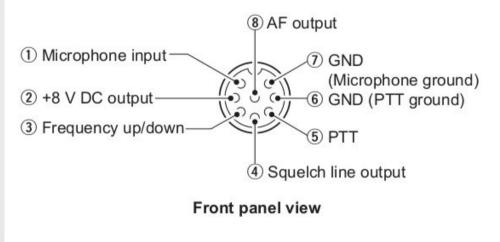
KB10IQ BITX40 Modifications

- Tuning algorithm modifications
- ICOM MIC connector
- RF Gain circuit
- Keypad
- Dual VFOs
- Save rig parameters in EEPROM
- Fine tuning potentiometer
- Added USB (for digital modes)
- Voice synthesis via Talkie library

BITX40: Tuning Behavior

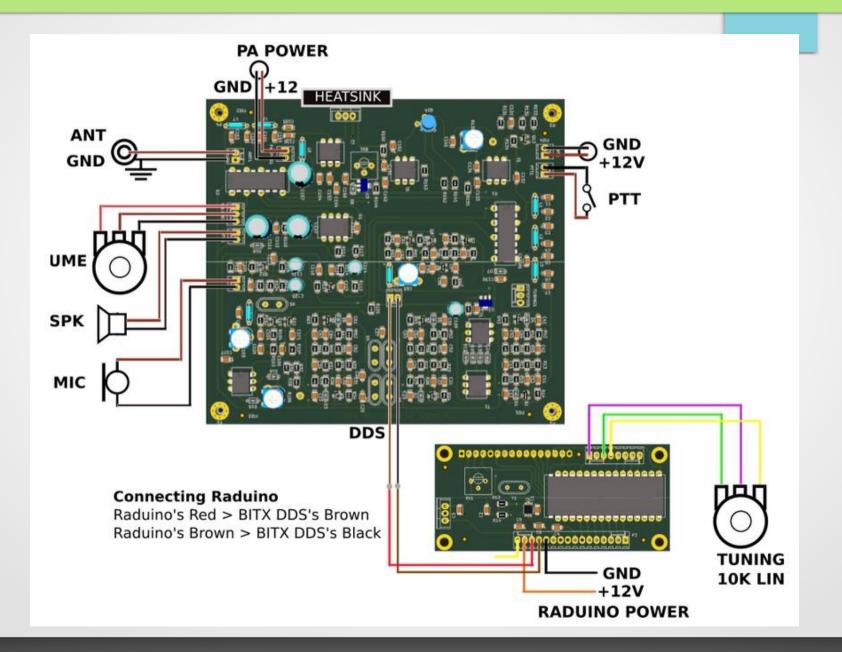
- Tuning via 10K ohm potentiometer between +5V and GND
- Wiper is connected to Arduino analog input
- Arduino ADC converts voltage to integer 0<=N<=1023
- To reduce tuning sensitivity, full range of the tuning knob is 50kHz. Minimum tuning is 100Hz (controlled in SW).
- HOWTO get to another 50kHz section of the band?
- Tuning knob extremes intentionally cause frequency to jump in large increments.
 - There is no warning that this will happen.
 - Many found this behavior undesirable.

BITX40: Tuning Modification


- Sketch changes:
 - Change sketch to tune only a 20kHz region
 - Remove "jump" feature at potentiometer edges
- Implement MIC modification (described next)
 - Use UP and DN buttons to jump to other 20 kHz regions
- Tuning granularity is still 100 Hz
 - Fixed later with Fine Tuning mod

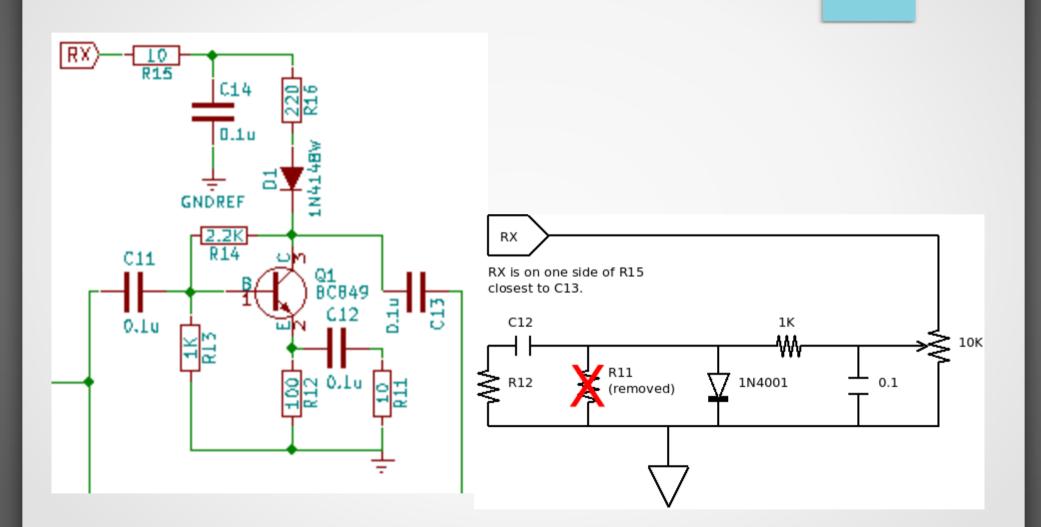
MIC modification

- Wire MIC to BITX40 main board
- Connect UP/DN to an unused Arduino analog pin
 - UP: GND, DN: thru 470 ohms, 4.7K pullup to +5V
- BITX40:
 - Potentiometer range: changed to 20kHz
 - To get to the next 20kHz region, use UP or DN button
 - Remedies the "galloping VFO" problem
- μBITX: haven't done this mod yet, but shortly...
 - Not sure what to do with UP/DN buttons
 - Uses rotary encoder for tuning


MIC connector pinout

Microphone connector

PIN No.	DESCRIPTION
1	Microphone input (Impedance: 600 Ω)
2	+8 V DC output (Maximum 10 mA)
3	Up: Ground Down: Ground through 470 Ω
(4)	Grounded when the squelch opens.
(5)	PTT
6	PTT ground
1	Microphone ground
8	AF output (varies with the [AF] control.)


Wiring Diagram

BITX40: RF Gain mod

- This receiver has **A LOT** of gain
 - S9+ signal overloads the receiver and distorts the audio
- Elmer recommended a circuit straight from EMRFD
 - Experimental Methods in RF Design, by ARRL
 - Mod based on: Revised 1st Edition Page 6.16, Figure 6.41
- I chose to remove R11 and add circuit to R11 pads
- No sketch mod is needed, this is just an analog circuit

Mod: RF Gain

BITX40 / µBITX: Add a Keypad

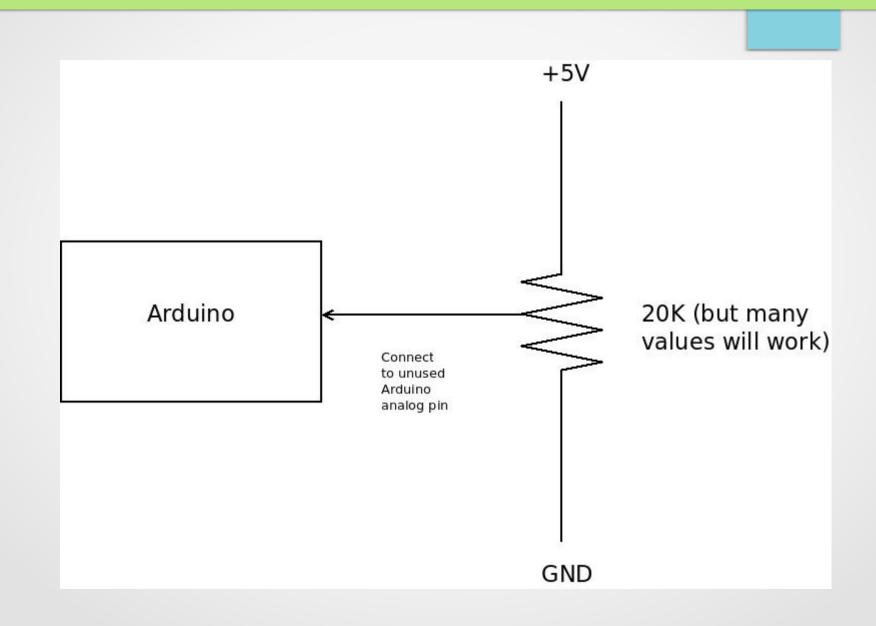
- Resistive keypad
- Single output, different voltage for each key
- Connect it to an Arduino analog input
- Modify sketch to decode keypad
- Requires: +5V, GND, and keypad output
 - Used a stereo headphone jack
 - Warning: don't insert/remove plug when powered!
 - I'm glad I use fuses!
 - Looking at different connector type for $\mu BITX$
- Connect "signal" to unused Arduino analog pin

Decoding the Keypad

- byte key = decode_keypad(analogRead(KEYPAD));
- int decode_keypad(int tmp) {
- int key = 999; // error value, 0 means no key pressed, or keypad not present
- if (((tmp >= 0) && (tmp <= 20)) || ((tmp > 520) && (tmp <= 1023))) { key = 0; } else {
- if ((tmp > 465) && (tmp < 495)) { key = 1; } else
- if ((tmp > 420) && (tmp < 450)) { key = 2; } else
- if ((tmp > 380) && (tmp < 410)) { key = 3; } else
- <snip>
- if ((tmp > 65) && (tmp < 95)) { key = 11;} else
- if ((tmp > 25) && (tmp < 55)) { key = 12;} else key = 999;
- }
- return key;
- }

SW Mod: VFOs

- VFOs
 - Just another memory location holding a frequency
 - SW mod plus a keypad button to activate the function
- Two VFOs: vfoA and vfoB
- Set active VFO toggle between vfoA and vfoB
- Swap VFOs trade contents between vfoA and vfoB
- Make VFOs equal (both equal to active VFO)
- Note to self: carry mode with VFO, not just frequency


SW Mod: Save/restore rig parameters

- EEPROM is accessible inside of the Arduino
- Use keypad button to save rig parameters
- On power up, rig parameters are restored
- What is saved:
 - Active VFO (A or B)
 - vfoA and vfoB frequency range (add mode, too)
 - Calibration values
- May add more to this in the future.

Fine Tuning Mod

- Normal tuning granularity is 100 Hz
 - Fine tuning granularity is 1 Hz
 - Range -255 Hz → +256 Hz
 - Improves intelligibility of SSB signal
- Very simple circuit (see next slide)
- Requires sketch modification to read value and adjust frequency

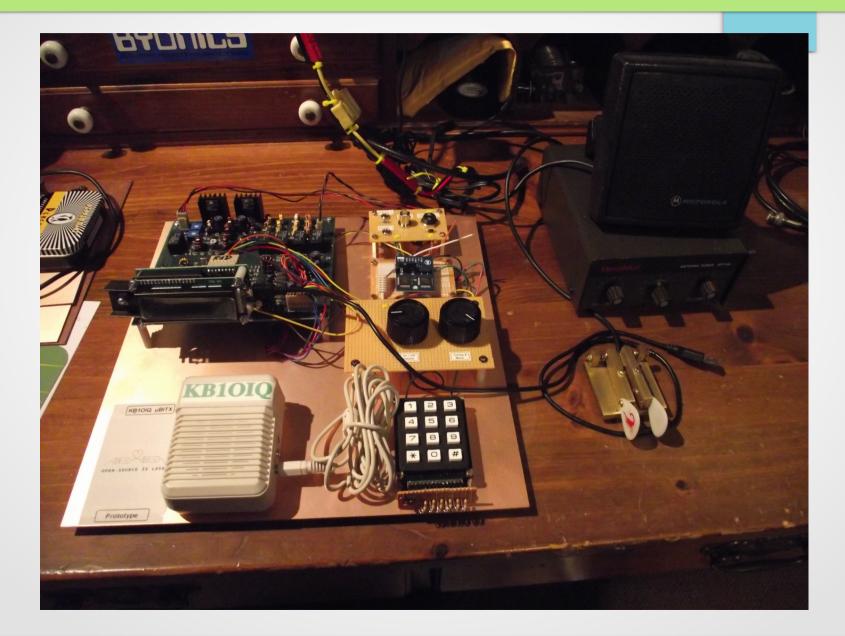
Mod: Fine Tuning Circuit

BITX40: USB Mode

- Desire to do digital modes with BITX40
- SW:
 - Keep track of USB/LSB mode
 - Modify set_frequency()
 - BFO frequency constant around 12 MHz
 - VFO frequency set to 5 MHz or 19 MHz
- HW:
 - Remove C91 and C92 (or USB power is only 1W)
 - Build a custom cable between RigBlaster Plug 'n Play and mic jack

Voice Synthesis

- Might this be useful to visually impaired hams?
 - 3 people have expressed interest
- BITX40
 - Used software Talkie library
 - Very limited vocabulary, proof of concept
 - Triggered by keypad
- µBITX
 - using Emic2 text-to-speech hardware module
 - MUCH better voice quality and vocabulary
- Audio mixer board (or two speakers)
 - To mix voice sounds with "radio sounds" in one speaker


BITX40: Modifications Considered

- AGC circuit
 - Audio: haven't found a good circuit
 - RF: ?
- Split mode
 - Need to send PTT to Arduino, then drive PTT on board
 - Nope, but PTT in uBITX is different...
- Simple rig control via hamlib
 - Nope, not enough code space

Questions about BITX40?

- Answer questions
- Moving on to µBITX

KB10IQ's µBITX Prototype

KB10IQ's µBITX Prototype

- 12"x12" copper clad circuit board
- Rear panel jacks
 - Antenna, 12V, speaker, key/paddle
- Emic2
- On/off/volume, rotary encoder
- Keypad
- White box: amplified speaker (temporary)
- Someday, this will be in a proper enclosure
 - Need to see what has to go in there...

µBITX mods by KB10IQ (so far)

- Major surgery on the sketch
 - Refactored everything into C++ classes
 - Saved most of Farhan's original sketch
 - Memory is a scarce resource! Use it wisely!
 - put all text strings in PROGMEM
 - byte (1 byte) vs. int (2 bytes) vs. long (4 bytes)
 - don't copy/paste code, use classes!
 - Reimplemented the menu system
- Converted LCD to I2C (recovered 6 digital pins!)
- Added Emic2, separate audio output (used 2 digital pins)
- Added keypad (used remaining analog pin)

µBITX: What works today for KB10IQ?

- Everything printed to LCD is also spoken by Emic2
- Menus rewritten with C++ class library (MenuSystem)
 - CW Menu: key, paddle, sideTone, keyer speed, etc.
 - Tuning Menu: lsb/usb/cw, RIT(nyi), select VFO A/B
 - Voice Menu: choose voice, talking speed, volume
- Keypad:
 - help, menu mode, direct frequency input
 - modes, VFOs (saved in EEPROM), speak on demand
- CW: key and paddle (left or right handed)
- Won't transmit out of band, CW key disabled in LSB/USB
- Fine grain tuning by 1Hz by pressing rotary encoder button

KB10IQ µBITX: Future Tasks

- Need to do:
 - RF gain
 - Anti-pop for speaker during $RX \rightarrow TX$ or $TX \rightarrow RX$ transition
 - AGC
 - MIC connector and UP/DN buttons
 - Remove RIT from the sketch (fine tuning fixes this)
 - Add Split mode between VFOs
 - Suitable enclosure
 - Audio mixer or 2 separate speakers?
 - Consider putting CAT code back into the sketch
- Very much a work in progress! Lots of FUN!

Summary (next to last slide)

- BITX40 / µBITX are FUN kits !
- HW and SW are freely documented and easily available
- Active user community on the internet (groups.io and Facebook)
- Hacking the HW and/or SW are encouraged!
- Cost: very reasonable
- KB10IQ mods are available on Sourceforge:
 - Search for KB1OIQ ham-radio-projects
 - https://sourceforge.net/projects/kb1oiq-ham-radio-projects/files
 - Look in the bitx40 and ubitx subdirectories
 - Photos, videos, detailed docs for mods, source code

Last slide

- I hope you enjoyed this talk thank you for attending!
- Email: kb1oiq@arrl.net

References

- Main website: http://www.hfsigs.com
- Discussion group: https://groups.io/g/BITX20
- Useful Hacks:
 - http://bitxhacks.blogspot.com
 - http://ubitx.net/
- Designer: Ashhar Farhan (VU2ESE), thank you!!
- Arduino Nano: https://www.arduino.cc/en/Main/arduinoBoardNano
- SI5351B: https://cdn-shop.adafruit.com/datasheets/Si5351.pdf