STEALTH ANTENNAS

SMALL HF ANTENNAS

THE SMALL SPACE AND BIG ANTENNA DILEMMA

CONSTRAINTS: COVENANTS **RESTRICTED LOT SIZE** CITY BYI AWS **BOARDS OF VARIANCE** STRATA RULES **NEIGHBOR COMPLAINTS OF UNSIGHTLY** STRUCTURES WHAT ELSE AS IF THAT'S NOT ENOUGH ?

THE CHALLENGE

- How to make HF antennas perform in small spaces
- Small antennas Small means shorter antennas that fit available space
- How to make a STEALTH antenna Antennas that are visible but don't look like antennas
- How to Hide antennas Out of sight but somewhere in/on the housing structure

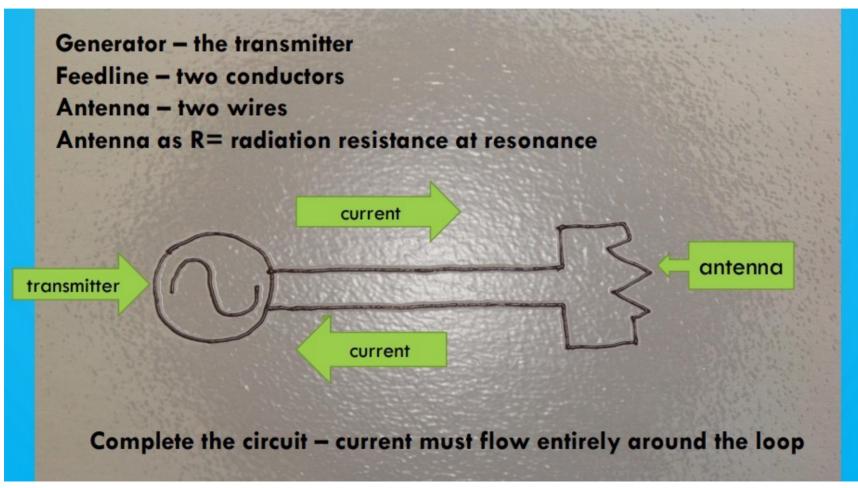
OPERATING ISSUES

- Performance issues using short antennas Lower gain – less "wire in the sky" Narrower bandwidths – tuning required
- Interference more likely Proximity to audio, video, AM, FM, PC, Tel, etc. equipment QRP to 100 watts probably max
- Safety issue

You and the antenna may share the same space RF biological exposure limits to be checked Structural integrity of mounted antennas – make secure

BUILDING RF TRANSPARENCY

- Wooden frame structures RF transparency – good Internal conductors – "antennas" Power, telephone, cable, alarm, etc. wiring Copper plumbing
- Concrete structures RF shielded at HF Rebar and metal framed windows – small aperture Metal 2 X 4 framing inside building Internal conductors


SOME ANTENNA THEORY

- BASIC ANTENNA FORMS ONLY 2 DIPOLE FORM VERTICAL FORM
- UNDERSTANDING SHORT ANTENNAS
 PROPERTIES
 BEHAVIOR
 PERFORMANCE
- WHAT TYPE MIGHT BE BEST DEPENDS ON CIRCUMSTANCES

ANTENNA CIRCUIT

- Generator the transmitter
- Feedline two conductors
- Antenna two wires
- Antenna as R = radiation resistance at resonance
- Complete the circuit current must flow entirely around the loop

Antenna Circuit

STANDARD ANTENNA

to which most other antennas are compared

- Resonant Half Wave dipole
- ¹/₂ Wave length elevation above ground
- At resonance, feed point ~ 50 ohms (radiation resistance) Good match to 50 ohm coax Low VSWR Maximum power transfer from rig to antenna
- Short antenna performance measured against this Gain, impedance, bandwidth

SHORT ANTENNA PROPERTIES

- Antenna gain is reduced due to shortness
- Feed point impedance changes
- Antenna no longer resonant at desired frequency radiation resistance drops significantly capacitive reactance appears at the feed point feedline matching becomes poor and high VSWR results
- Efficiency drops

ohmic losses become a significant part of the feed point Z

SOLUTIONS

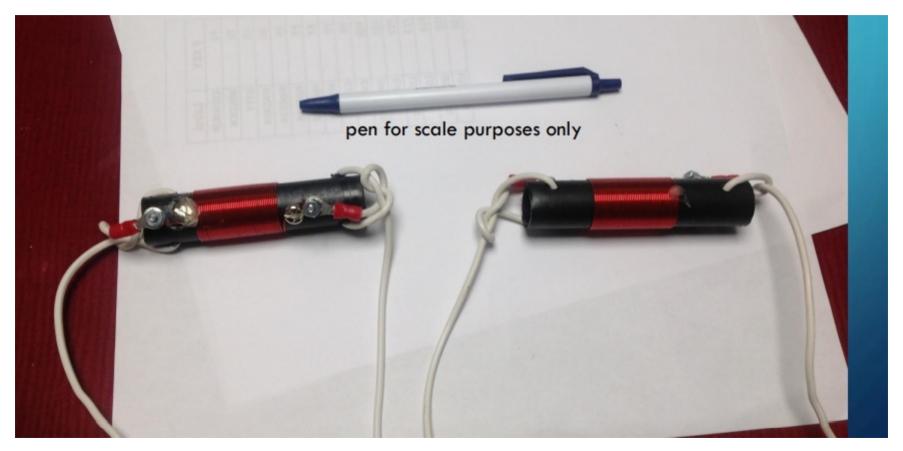
- Dipoles
- Loops
- Verticals
- Long (actually short) wires
- Other?

RESTORE RESONANCE

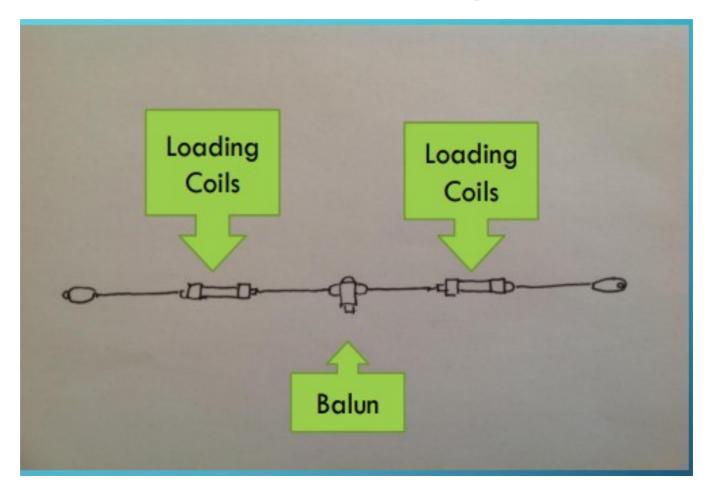
- Short antenna "looks" capacitive
- Restore feed point impedance to look resistive
- Add an inductor somewhere "in" the antenna nulls out the capacitance creates resonant circuit used with both dipoles & verticals
- Add a capacitor to the end of the antenna make antenna look longer (electrically) than it is used most often with verticals

USE AN EXTERNAL TUNER

- Antenna is not brought back to resonance no inductive or capacitive loading added
- Tuner matches complex antenna feed point impedance to 50 ohm output of transmitter
- Useful for multi-band operation
- Tuning limitations may be evident if tuner cannot match the antenna / feed line impedance
- Antenna is not brought back to resonance
- Rig tuners not well suited to off-resonant antennas


LOADING COILS

- Loading Coils are inserted in series with antenna "makes up for shortness"
- Cancels the Capacitive component
- Resonates the antenna
- Coil placement
 Dipoles one in each leg
 Verticals one towards or at the bottom


COIL LOADED DIPOLE

- Balanced system
- Single band
- No ground issues
- Reduce lengths 80m dipole from 132 ft to 69 ft 40m dipole from 66 ft to 38 ft most likely an outdoor application
- Radio tuner ought to be OK

LOADING COILS

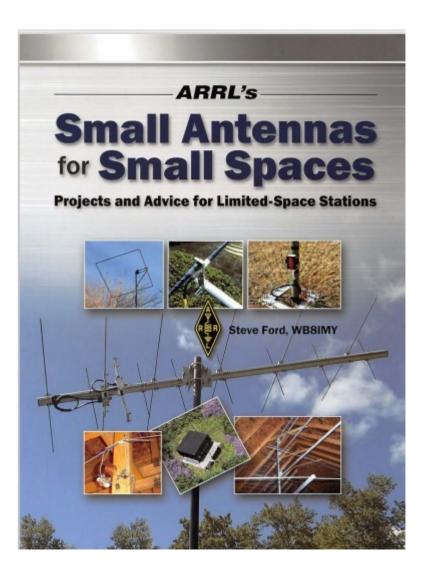
Coil Loaded Dipole


STEALTH

- Flagpole Verticals ground mounted
- Wires lying on roof tops Black insulation, small diameter, #22
- Wires on Gable ends No good under AL eaves with AL gutters
- Wires on Fences Loops
- Attics for yagi's
- VHF/UHF on short mast looks like TV antennas
- Vent pipe VHF/UHF verticals, roof mounted (Ventenna)

STEALTH & SHORT VERTICAL

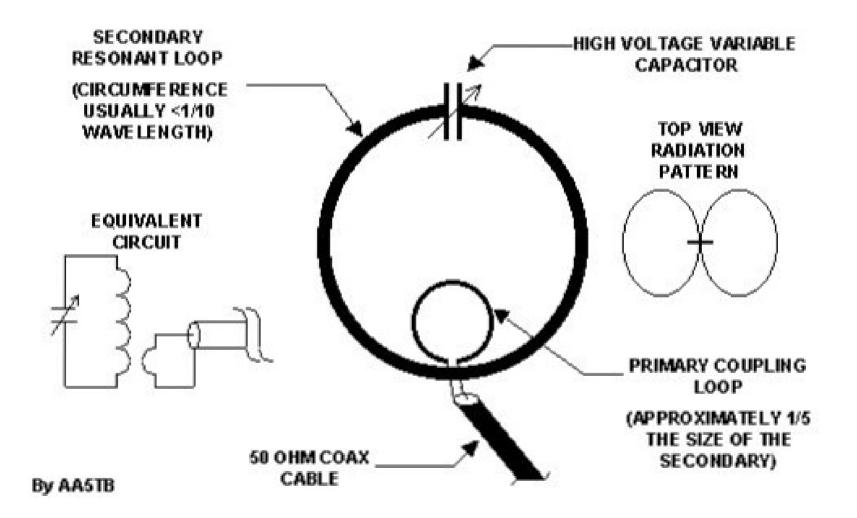
OCF Flagpole Vertical HF Antenna



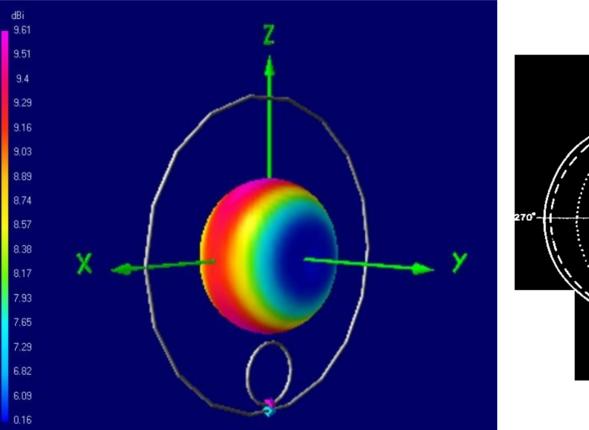
ARRL publication available online as a free pdf file.

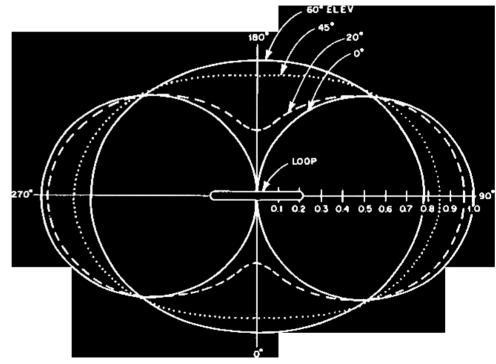
It is an excelent resource for all versions of compact antennas.

Search on the title and several sites will be listed for downloading



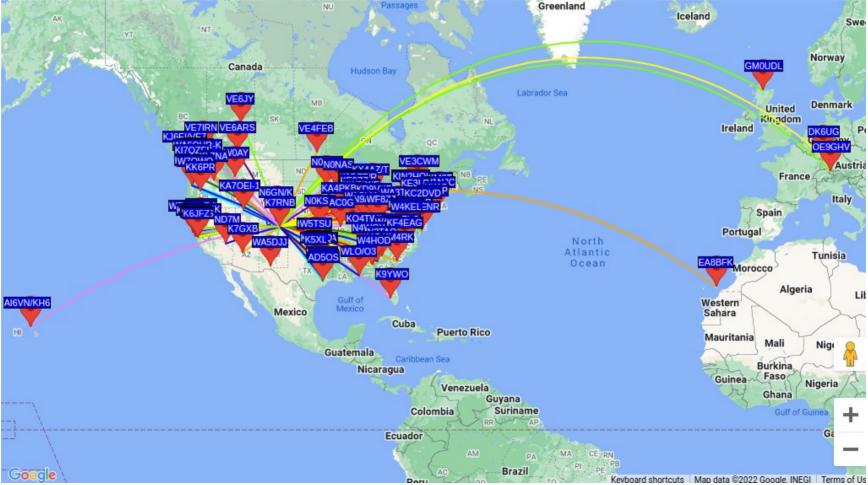
HF Magnetic Loop Antenna




Magnetic Loop Antenna

What exactly is an MLA or STL?
 Differences between dipole and loop antennas
 Why is an MLA a good stealth antenna?
 How to construct a high performance MLA.

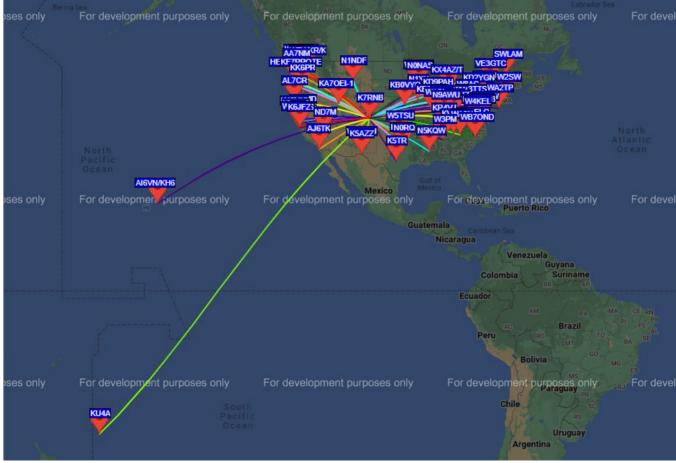
MLA Radiation Pattern


Differences between dipole and loop antennas

- 1. $\frac{1}{2} \lambda$ long wire vs 3 foot diameter loop
- 2. Height ¹/₂ wave length vs 1 Loop diameter
- 3. $\frac{1}{4}$ λ vertical gnd dependence vs no loop ground
- 4. Elevated, low V & I vs Close by, very high V & I
- 5. Broadband, efficient vs Narrow band, < efficient
- 6. Set & forget vs Remote capacitor tuning (hi Q)
- 7. Cheap to buy/build vs Expensive unless DIY

Why is an MLA (STL) a good stealth antenna?

- 1. Work efficiently in the 40M thru 10M bands
- 2. No ground plane required
- 3. Can be mounted close to physical ground
- 4. HOA friendly due to small size, easily disguised
- 5. Attic mount, covert outdoor, portable indoor
- 6. Reduce QRM and QRN


20M STL (3FT Diameter- Stand Mounted) 5 WATTS WSPR

40M thru 30M 6 Foot Diameter STL

40M STL (6FT Diameter- Attic Mounted) 5 WATTS WSPR

Companies New Products Gift Cards Clearance Product Manuals Newsletters Contact and Support

Recommended for the MFJ-1788X, SUPER HI-Q LOOP, 36~ DIA, 15-40 METER, 220VAC

tps://mfjenterprises.com

CHA F-LOOP 3.0

\$500.00

FREE SHIPPING

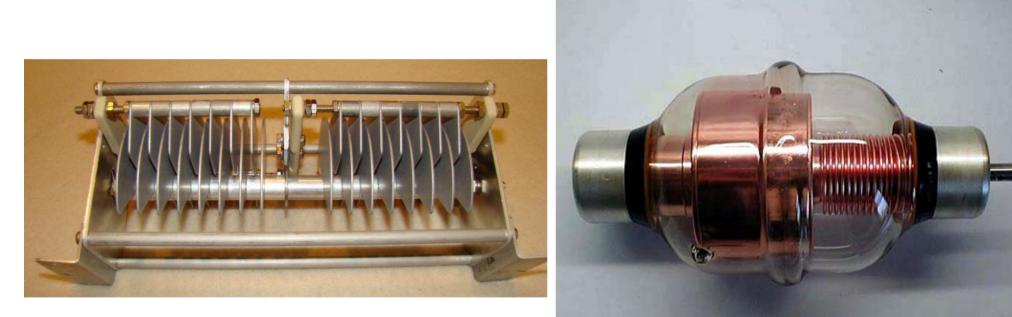
****** 7 Reviews

OPTIONS

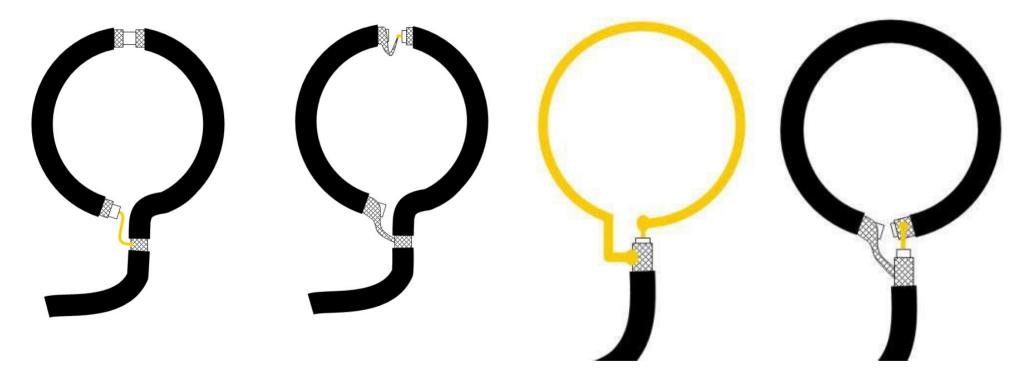
CHA F-LOOP 3.0 BASIC KIT

 \sim

SUPPORT (optional) -- Select -- Quantity 1


Add to Cart

The CHA F-LOOP 3.0 was designed with portability, ease of use simplicity,


How to construct a high performance STL

- 1. High quality (low ESR) capacitor required
- 2. Cap must have KV and high amp capabilities
- 3. Large diam. round or wide flat conductor loop
- 4. Minimum solder joints, use silver solder
- 5. Can be circular, octagon, square shape
- 6. Maximize enclosed area of the loop
- 7.Minimize every milliohm of resistance (loss)

Variable Capacitor

Feeder Loop

Faraday Shielded Loop

Un-shielded Loop

MLA Build Materials

0.016X4X10" Aluminum sheets Ace or Hob Lob

3/4"X ¾" Aluminum Extrusion - HD

Paint stir stick - HD

Not pictured: Center Hub and Silver Solder

6-32 Screws & Nuts - HD

Snow markers HD

6-32 Threaded Shaft - Grainger

Cu sheet - web

3/4"Cu Pipe - HD

66pacific.com Small Transmitting Loop Antenna Calculator

Length of Conductor (antenna

"circumference")

10.8 feet

Diameter of Conductor

(For efficiency, should be > 3/8" or 1 cm) 1.0 inches

Frequency

14.0

megahertz

Transmitter Power (optional)
100
Wa

Watts

Units of Measurement ©English (feet and inches)

OMetric (meters and centimeters)

CALCULATE

Antenna efficiency: 71% (-1.5 dB below 100%) Antenna bandwidth: 18.0 kHz Tuning Capacitance: 52 pF

Capacitor voltage: 4,127 volts RMS Resonant circulating current: 18.8 A Radiation resistance: 0.101 ohms Loss Resistance: 0.040 ohms Inductance: 2.49 microhenrys Inductive Reactance: 219 ohms Quality Factor (Q): 778 Distributed capacity: 9 pF

Antenna "circumference": 10.8 feet

Side length: 1.35 feet

Antenna diameter: 3.3 feet

Comments: The specified conductor length of 10.8 feet is OK.

66pacific.com Capacitance Calculator

Area of one plate

11	square inches
----	---------------

Separation distance

0.045

inches

V

Number	of	plates	(2	or	more)
3					

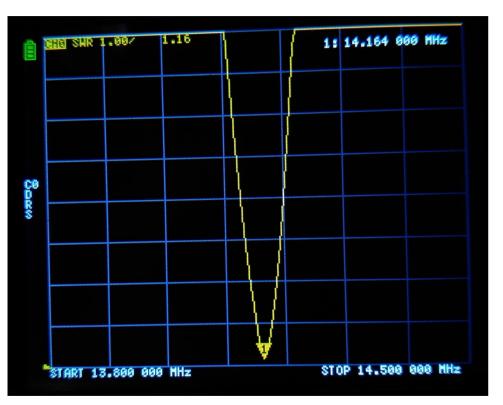
Dielectric constant Air: 1.001

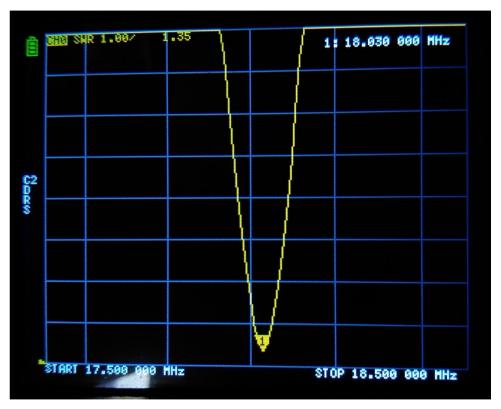
Units of Measurement

English (feet and inches)

OMetric (meters and centimeters)

RESULTS:

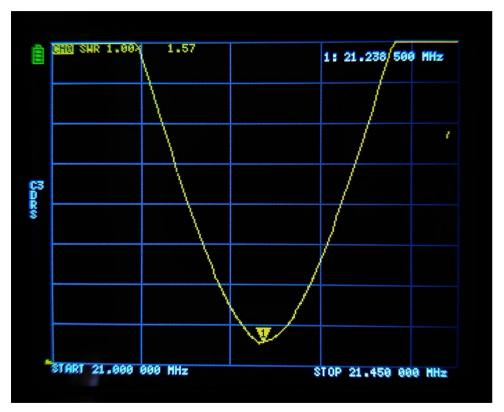

Capacitance: 110 picofarads

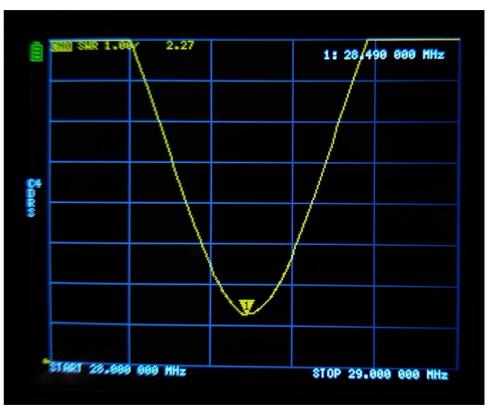

Input Values:

Area: 11 square inches Separation distance: 0.045 inches Number: 3 Dielectric constant: Air: 1.001

Calculate

20M – 10M STL: Nano VNA SWR Sweeps





STL Tuned to 20M Antenna efficiency: 72% (-1.4 dB below 100%)

STL Tuned to 17M Antenna efficiency: 86% (-0.7 dB below 100%)

20M – 10M STL: Nano VNA SWR Sweeps

STL Tuned to 15M Antenna efficiency: 91% (-0.4 dB below 100%) STL Tuned to 10M Antenna efficiency: 97% (-0.1 dB below 100%)

IC 7300 40M SWR Sweeps

20M Dipole Plus Automatic Tuning Unit

40M 6 Ft Diameter STL

References

BLACKSTONE VALLEY AMATEUR RADIO CLUB

W1YRC Bob Beaudet K1GND Jim Johnson

https://www.nonstopsystems.com/radio/pdf-ant/article-antennamag-loop-2.pdf

"An Overview of the Underestimated Magnetic Loop HF Antenna"

By Leigh Turner VK5KLT (updated Oct, 2015)